
NASA Computational Case Study,
Hyperspectral Data Processing: Cryospheric Change Detection

Nargess Memarsadeghi and Thomas Doggett

Abstract

In this case study we learn how remotely-sensed hyperspectral data of
NASA’s Earth Observing-1 satellite are processed to detect features such
as ice, water, and snow on Earth.
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1 Remote sensing via hyperspectral imaging

Remote sensing refers to collection of information about an object without being
in physical contact with it [11]. This information can be gathered via satellites,
cameras on airplanes, or sensors that are distributed over an area. Depend-
ing on the data acquisition method used, there are various ways of processing
and interpreting the obtained information. Different matter absorb and emit
light at different wavelengths of the electromagnetic spectrum (Figure 3). Our
eyes are sensitive to the emitted light only in the narrow Visible range of this
spectrum, indicated Figure 3. Measuring the emitted energy of an object at dif-
ferent wavelengths can often times uniquely identify various properties such as
its composition, temperature, humidity level, etc. Studying the relationship be-
tween matter and its absorbed/emitted energy at different wavelengths is called
spectroscopy. For example, jewelers use devices that distinguish diamonds from
fake ones based by measuring the materials’ radiated energy at particular wave-
lengths and matching it with the known spectral signature of diamond at that
wavelength. Such a device is called a spectrometer, while a similar device for
astronomy applications is often called a spectroscope. Similarly, one approach
to remote sensing is imaging spectroscopy. Scientists can identify water, snow,
different vegetation types, fire, sand, ... via images obtained at different wave-
length ranges of the light spectrum, or via hyperspectral images.

Hyperspectral data processing is widely used for detection and identifica-
tion of surface, topographical, and geological features in earth and planetary
sciences [3]. In a hyperspectral image, each point in the spatial domain is
represented as an n-dimensional pixel, where each dimension represents mea-
surements made at a different range of the light spectrum. For hyperspectral
imaging, n can be more than 200. For n values of 10 or less, the data is often
referred to as a multispectral one [10]. Therefore, hyperspectral/multispectral
sensors on board a satellite collect information about each region as a set of
n images. Each image is called a spectral band or channel. The physical area
that each pixel represents in the spatial domain is called the spatial resolution.
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The spectrum range at which measurements of each spectral channel (or each
dimension of a pixel) were taken, is called the spectral resolution of that pixel.
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Figure 1: The wavelengths of electromagnetic radiation, displayed here in me-
ters, are used to categorize different parts of the electromagnetic spectrum.
Image credit: http://dawn.jpl.nasa.gov/DawnCommunity/flashbacks/fb 10.pdf

Earth Observing 1 (EO-1) is a NASA satellite that was launched on Novem-
ber 2, 2000 [1,3]. It has three instruments, one of which is Hyperion. Hyperion
collects hyperspectral data from more than 220 bands with 30 meters spatial
resolution and 10nm (1nm = 10−9m) spectral resolution covering wavelengths
from 0.4 to 2.5 µm (1 µm = 10−6 meter). Each image recorded by the instru-
ment covers a 7.5 km by 100 km land area. Scientists process Hyperion data
for identifying and detecting various features on earth or its atmosphere. Some
algorithms detect clouds, smoke, and different gases, and others identify fire,
water, ice, snow, and different vegetation types.

2 Cryospheric change detection

In this case study, we learn about a cryospheric change detection algorithm
by processing remotely-sensed hyperspectral data. The cryosphere is the com-
ponent of the Earth that is composed of ice in the form of snow, floating ice,
glaciers, and the soil at or below water’s freezing point which dynamically in-
teracts with atmosphere, climate, planet’s crust and water cycle [2]. First, we
process a subset of a Hyperion dataset that was obtained over Mapam Yumco
in Tibet at 4:56 on March 27, 2004. The latitude and longitude for this dataset
is 31◦ to the north and 81◦34′ to the east.

Activity 1. Read Hyperion band number 8, 21, 31, 51, and 150 of the men-
tioned dataset from data files titled b 8.tiff, b 21.tiff, b 31.tiff, b 51.tiff,
and b 150.tiff respectively. Report the size of images and their pixels’ data
type. Display and save a color image in a .jpg file using bands 31, 21, and 8 as
the Red (R), Green (G), and Blue (B) channels respectively.
Hint 1: You can use a Matlab routine called imread, or implement its
equivalent, for reading .tiff images.
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The first step in most sensor data processing algorithms, such as the one
we will present here, is to calibrate the collected raw Digital Numbers (DNs)
to represent correct sensor radiance values by compensating for the gain factor
and biases of the instrument’s radiation. That is DN values in band number
i, DNi, should be divided by a gain factor Gi, which is a constant for each
channel/band, to obtain the corresponding radiance images Li for that band
(Eq. 1):

Li =
DNi

Gi
. (1)

For Hyperion data, Visible and Near Infra Red (VNIR) bands, which are
band numbers less than 70, have a gain factor of 40, while the gain factor for
the remaining Short Wave Infra Red (SWIR) bands is 80 [1]. Then, the radiance
values for some algorithms should be converted to reflectance values as described
in Eq. 2. While radiance is a measure of the amount of light or radiant energy
received by the sensor, reflectance measures the amount of energy emitted and
reflected from the surface being sensed and depends on the properties of that
surface and the geometric relationship between the surface and the Sun at the
time of the imaging [9].

ρi =

(
πd2

cos(θ)ESUNλ

)
Li. (2)

Earth-Sun distance d is in Astronomical Unit (AU) which is about 149,597,870.7
kilometers, the approximate mean of the Earth-Sun distance. Distance d is
known and different for each day of the year [8].

ESUNλ
is the incident solar flux (irradiance), the amount of electromag-

netic energy from sun incident on a surface per unit area and per unit time in
Watts/(m2 × µm). It is a function of the wavelength λ at which the measure-
ment is taken. Solar irradiance values for different Hyperion bands are provided
in hyp irradiance.txt file [12].

The solar zenith angle , θ, is the angle between a vertical line on the data
location on earth and the line of sight to the sun. It can be obtained from the
date and time of the data acquisition and knowing the location of the observed
data on earth. This site [7] provides the solar elevation or altitude for a given
location at a given time. Then, one can derive the solar zenith angle using the
relationship that the sum of the solar zenith and solar elevation angles is 90 de-
grees. These angles are also sometimes provided by the instrument’s telemetry.

Activity 2. Convert the provided radiance values to reflectance for the given
dataset.
Hint 1: Use Equation 1 to first obtain radiance values by calibrating DNs, and
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then use Equation 2 to derive reflectance values from radiance values.
Hint 2: What are the solar flux values that you are going to apply to images
from each band?
Hint 3: What is the solar zenith angle for the given dataset?
Hint 4: What is the Earth-Sun distance for the given dataset? Use information
provided in [8] and the data acquisition date.

There are often other pre-processing algorithms one needs to apply to images
before being able to analyze them. For example, removing the noise resulting
from the detector fluctuations and geo-coding (knowing the geographic coordi-
nate of each pixel) are two common preprocessing algorithms, some of which
maybe performed on-board the spacecraft. Also, to ensure that data represent
surface reflectance, atmospheric effects such as vapor, cloud, and smoke are ac-
counted for (atmospheric correction). For this case study, we are working with
Level 0.5 Hyperion data which has only been partially processed (please see
Figure 2 in [2]), as this is the product that can be readily produced with avail-
able on-board processing power. Also, we are not concerned with geo-coding
the data or the cloud detection algorithm since the area is covered with small
amounts of cloud (0-9 percent based on data’s meta data).

Now we start applying the classification algorithm for identifying ice, snow,
and water. This exercise is based on an algorithm that was developed for auto-
matic detection of such features on board EO-1 [2]. This algorithm only requires
processing 5 out of Hyperion’s 242 bands, listed in Table 1, which are provided
to you. The algorithm consists of a set of conditions that are evaluated for
each pixel and decisions are made based on these evaluations. This algorithm is
demonstrated in Figure 2 as well as Table 2. Since the algorithm was designed

Band Type Wavelength (µm)
8 Short Wavelength Visible 0.43
21 Mid-wavelength Visible 0.56
31 Red 0.66
51 Near Infrared 0.86
150 Short wave infrared 1.65

Table 1: Hyperion bands used by the Cryospheric change detection algorithm
in this case study based on the algorithm in [2].

for use on-board the spacecraft, it relies only on some simple pixel level arith-
metic. In Table 2, ρx represents reflectance values of the band at wavelength x,
while Lx represents radiance values of the band at wavelength x. The algorithm
also uses the Normalized Difference Snow Index (NDSI) values at various steps
(Eq. 3).

NDSI =
(ρ0.56 − ρ1.65)

(ρ0.56 + ρ1.65)
(3)
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Figure 2: Flowchart of the cryospheric change detection algorithm, developed
by Thomas Doggett and his colleagues [2], for identifying ice, snow, land and
water given L0.5 Hyperion data. The raw data in five bands is first converted to
reflectance values and those are used in an iterative series of empirically derived
band ratios (see Table 2) to classify each pixel.5



Step Algorithm Yes No
1 (ρ0.66/ρ0.86) > 2.23 Water step 2
2 (ρ0.56/ρ0.86) > 3.83 Water step 3
3 (ρ0.56/ρ0.86) < 0.8 Land step 4
4 ρ1.65 > 1.1 or ρ1.65 < 0 Unclassified step 5
5 NDSI < 0.176 Unclassified step 6
6 (ρ0.56/ρ0.66) < 0.91 Unclassified step 7
7 (NDSI > 0.56) and (ρ0.56/ρ0.66) < 1.11 step 7a step 8
7a (ρ0.56/ρ0.66) < 1 Snow step 7b
7b (ρ0.86/ρ1.65) > 16 Unclassified step 7c
7c (ρ0.66/ρ1.65) < 5.4 Unclassified step 7d
7d (ρ0.66/ρ0.86) > 1.2 Ice Snow
8 NDSI < 0.56 and (ρ0.56/ρ0.66) < 1.064 Unclassified step 9
9 NDSI < 0.47 and (ρ0.56/ρ0.66) > 1.76 Water step 10
10 (ρ0.43/ρ0.56) < 1.37 10a step 11
10a (ρ0.86/ρ1.65) > 1.4 Ice step 10b
10b (ρ0.43/ρ0.86) > 2.65 Water step 11
11 NDSI < 0.27 Cloud step 12
12 (ρ0.86 − ρ1.65)/(ρ0.86 + ρ1.65) > 0.71 Unclassified step 13
13 (ρ0.56/ρ0.66) > 1.376 Water step 14
14 (ρ0.43/ρ0.56) > 1.73 Unclassified Water

Table 2: The cryospheric change detection algorithm used in this case study
based on the algorithm and Table 5 in [2].
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Activity 3. Perform the cryospheric classification algorithm as described on
the given dataset. Display and save the results in a .jpg file.
Hint 1: Use the suggested color coding in Table 3 for visualization of different
classes.
Hint 2: What would be the numeric code for RGB channels for each color?

Figure 3: Scientist Thomas Doggett mapping snow and ice over on Lake Men-
dota, Wisconsin in January 2004 to ground truth the cryosphere classification
algorithm.

So far we have performed a classification algorithm on hyperspectral data.
That is, we not only have grouped points which are similar to each other into
classes (clustering), we also know what each class represents and could label
them (classification) as water, ice, etc. As you can see by now, classification
algorithms rely on some knowledge of the data or properties of the classes. For
example, the algorithm you developed for this case study was designed based
on research results of earth scientists and their knowledge of reflectivity levels
of different matter. If such an expert knowledge about objects and their reflec-
tivity levels is absent, often times one can perform an unsupervised clustering
algorithm on data, and then use ground truth points for each class to assign cor-
rect labels to them and turn the clustering result to a classification one. Ground
truth represents prior knowledge of data and can help us make correct decisions
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about other similar locations where such knowledge is lacking. For example,
we know the location of seas and big rivers on a given image. If other points
are grouped in the same cluster with a known sea on an aerial image, we can
conclude that location contains water. Ground truth is also often used to verify
and test the correctness of newly designed algorithms (e.g. Did we design the
correct algorithm and there is really sand where it claims there is?). Often times
scientists or students go to the field of study and collect ground truth informa-
tion about vegetation types or other surface properties with a spectrometer and
a hand-held Global Positioning System (GPS) device. Figure ?? shows scientist
Thomas Doggett gathering collecting ground truth data for verification of his
snow, water, ice, and land classification algorithm. Field data usually makes
good school assignments and field trips for students.

Next, we explore the clustering approach. One of the widely used clustering
algorithms, where k is the number of desired classes, is the k-means algorithm
[4]. This algorithm aims to group points that are close to each other according
to a similarity function so that sum of squared distances from all points to their
cluster center is minimized. This is how this algorithm achieves this objective:

1. Select k random data points as initial cluster centers.

2. Calculate distances of all data points from these k cluster centers.

3. Assign each point to its closest cluster center.

4. Calculate the mean of all points in each cluster, and assign it as the new
cluster center.

5. Repeat steps 2-4 till the algorithm converges, that is when the cluster
centers do not change anymore.

Class Color
Land Brown
Water Blue
Ice Turquoise
Snow White
Unclassified Black

Table 3: Suggested color codes for visualizing the classification results.

Question 1. Is this algorithm guaranteed to converge? Why or why not?
Hint 1: What is the objective function that is being minimized?
Hint 2: Does this function have a global minimum? If yes, calculate it; if no,
why not?
Note: To learn more about this algorithm, you can first go through another
case study on this topic [5, 6].
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Activity 4. Apply the k-means algorithm for clustering of the data into 5
classes. Display the results by using your knowledge of the data from previous
Activities.
Hint 1: What is the dimensionality of each point for this dataset?
Hint 2: What is the value k, number of desired classes? (see Table 3).
Hint 3: Use result of the cryospheric algorithm as your ground truth to label
each class.

Question 2. What are the advantages and disadvantages of each approach?
Hint 1: How do the two approaches compare in terms of the number of required
calculations per pixel?
Hint 2: How do the two approaches compare in terms of the running time?
Hint 3: How do the two approaches compare in terms of the required memory?
Hint 4: How does each approach rely on the user’s knowledge of the data?
Hint 5: How does the two algorithms compare in terms of the quality of results?
Do they group the same set of points as a cluster?
Hint 6: Can you classify each pixel independently of others in each approach?

In this case study we performed cryospheric change detection algorithm on
a Hyperion dataset of NASA’s EO-1 satellite. In fact, the same processes your
learned about here currently run on board of the EO-1 spacecraft! Then, prod-
ucts similar to what you have generated are downlinked to Earth.
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