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Abstract

In this case study, we describe a method for computing the position of Sun-
grazing Comet ISON for any specific date and time, so that you can find when
it will be visible at your location.

1 Introduction

Comet ISON (officially designated C/2012 S1; see Figure 1) was discovered in
September 2012 by astronomers using a telescope of the International Scientific
Optical Network (ISON) in Russia. It began life at about the time of the
formation of the Solar System, some 4.5 billion years ago. Since that time it has
been one of a great many icy objects populating the Oort cloud—a spherical
cloud of bodies surrounding our Solar System, well beyond the orbit of Pluto. [1]
Due to random gravitational tugs from other bodies, ISON has now been set on
a path on its first-ever—and probably last—trip into the inner Solar System.
It will move well inside the orbit of Mercury, and will get to about 1.7 solar
radii from the Sun’s surface before moving back out away from the Sun toward
the Oort cloud again. During its close passage to the Sun around November
28, 2013, Comet ISON may remain intact, break into multiple fragments, or be
vaporized altogether; its fate is not yet known. If it survives its firey passage
near the Sun, ISON should be easily visible from Earth during December 2013.

With a little effort, you can calculate Comet ISON’s position for yourself,
and determine when and where it will be visible from your location.



Figure 1: Image of Comet ISON, C/2012 S1, taken on April 10, 2013 by the
Hubble Space Telescope. (Credit: NASA, ESA, J.-Y. Li, and the Hubble Comet
ISON Imaging Science Team.)

2 Time Measurement

In order to calculate the position of a celestial body like Comet ISON, we begin
with finding a suitable method for measuring time. In everyday civil use, we
measure time using a rather cumbersome system: years, months (of irregular
length, between 28 and 31 days), and day of month. Within a single day, we
divide time into hours, minutes, and seconds.

This system is not particularly convenient for use in calculations or plotting,
where we would like to have time varying smoothly along some continuous time
scale and measured with a single unit. Astronomers have developed such a
uniform scale of time measurement, called the Julian day: it is defined to be the
total number of days elapsed since noon on Monday, January 1, 4713 B.C. [2,3]
For example, noon on January 1, 2000 is Julian day 2451545.0, since that’s the
number of days that had elapsed in the 6712 years since the beginning of 4713
B.C.

The time of day is accounted for by adding a fractional day: for example,
0.0 day for midnight, 0.25 day for 6:00 am, or 0.5 day for noon. Usually the
fractional day is counted from midnight Coordinated Universal Time (UTC),
which is the time in Greenwich, England, and is five hours ahead of Eastern
Standard Time (EST).! For example, if it is 4:00 am EST on December 25,

LOther time scales may be used as well. When it’s important to be clear which time scale
is used in computing the fractional day, the time scale is added in parentheses following JD:
for example, “JD(UTC)”.



then add 5 hours to find that this is equivalent to 09:00 UTC December 25.
Since 9/24 = 0.375, 09:00 is 0.375 of a day; hence 09:00 UTC December 25 is
the same as December 25.375.

The Julian day for any date on the Gregorian calendar may be found by
consulting a table of Julian days [4], or computed using a simple algorithm. Let
Y be the year, M the month number (1 for January, 2 for February, etc., up
to 12 for December), and D be the day of month (including a fractional day,
counted from midnight UTC). The algorithm for computing the Julian day (JD)
is [3]:

o If M =1 or M = 2, then replace Y with Y — 1, and M with M + 12.
(Otherwise leave M and Y unchanged.)

e Calculate

A = INT (%) (1)
B = 2—A+INT<§> (2)

e Then the Julian day JD is found from

JD = INT[365.25(Y +4716)] +INT[30.6001 (M +1)]+ D+ B—1524.5 (3)

Here INT(z) indicates the greatest integer less than or equal to .

EXAMPLE 1. Robert Goddard launched his first experimental rocket in Auburn,
Massachusetts, on March 16, 1926, at 19:30 UTC. What was the corresponding
Julian day?

Solution. The time 19:30 corresponds to a fractional day

19 30
22 T .8125 ds
94 " 1aag ~ 0812 day,

where we have used 1 day = 24 hours = 1440 minutes. Now using the above
algorithm to compute the Julian day, we find:

Y =1926, M =3, D=168125, A=19, B=-13,

and so

JD = 2425990 + 122 4+ 16.8125 — 13 — 1524.5 = | 2424591.3125 JD




Activity 1. Apollo 11 astronaut Neil Armstrong first set foot on the Moon on
July 21, 1969, at 02:56 UTC. Find the Julian day corresponding to this time.
(You may solve this problem directly with a calculator, or you may wish to
write a general calculator or computer program to convert a calendar date to
the corresponding Julian day.)

3 Reference Frames

In order to describe an orbit mathematically, it is necessary to introduce a refer-
ence frame, with respect to which the orientation of the orbit can be measured.
Such a reference frame is determined by a reference plane, as well as a reference
direction within that plane. Two reference planes are in common use:

e The equator is the plane of the Earth’s equator. This is the reference
plane usually chosen for bodies orbiting the Earth.

e The ecliptic is the plane of the Earth’s orbit. This is the reference plane
chosen in most other cases: finding positions of Sun-orbiting bodies such
as planets, comets, asteroids, etc.

In both cases, the reference direction is chosen to be the direction of the vernal
equinoz, which is in the direction from the Earth to the Sun on the first day
of spring in the northern hemisphere. It is a fixed direction in space in the
constellation Pisces, and lies along the line of intersection of the planes of the
equator and the ecliptic. The line pointing toward the vernal equinox is therefore
common to both reference planes.

When an orbiting body crosses the reference plane from south to north, it
is said to be at the ascending node of the orbit. Crossing the plane in the other
direction, north to south, is the descending node.

Throughout this case study, we’ll use the ecliptic as the reference plane.

4 Orbital Elements

Comet ISON is in a nearly parabolic orbit around the Sun, and requires some
different techniques than those described in an earlier paper for elliptical orbits
around the Earth. [5] To calculate the position of the comet at any time, we
need several parameters to describe the orbit:

e The size and shape of the orbit are given by the perihelion distance q of
the parabola—that is, the distance between the comet and the Sun at
closest approach. Since the Sun is at the focus of the parabolic orbit, this
is the same as the distance from the focus to the vertex of the parabola.

e The orientation of the orbit in space with respect to the equatorial refer-
ence frame is determined by three angles, as shown in Figure 2:
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Figure 2: Ecliptic orbital elements of Comet ISON (m) in its parabolic orbit
around the Sun (S). Here P is the perihelion point; N is the ascending node
of the orbit; € is the longitude of the ascending node; w is the argument of
perihelion; and i is the inclination of the orbit. Also shown are the Sun-comet
radial distance r; the true anomaly f; and the argument of latitude u. (After
McCuskey, 1963 [6].)

— The inclination i of the orbit. This is the dihedral angle between the
orbit plane and the plane of the Earth’s equator.

— The longitude of the ascending node ). This is the angle, measured
in the plane of the ecliptic, between the vernal equinox and the as-
cending node of the orbit.

— The argument of perigee w. This is the angle, measured in the plane
of the orbit, between the ascending node and the perihelion point.

e The four elements given so far completely describe the orbit in space. We
now only need to specify where in the orbit the comet can be found at a
specific time. This is done by specifying the perihelion time T, which is
the time at which the comet is at the perihelion point.

5 Position of ISON Relative to the Sun

We can now begin the orbit calculations, for which we’ll use standard two-body
orbit propagation methods [6]. Our goal will be to find the azimuth A and
elevation h of the comet, as seen from a specific location on the Earth at a given
instant of time.



First, we will need to find the true anomaly® f. This is the angle, measured
in the plane of the orbit, from the perihelion point to the comet’s position at
time ¢, with the focus of the orbit at the vertex of the angle (Figure 2). The
true anomaly f at any time ¢ is found by solving Barker’s equation,?

tan (g) + %tang (g) = \/?]ff(t—Tp). (4)

Here G My, is the product? of Newton’s gravitational constant G and the mass
of the Sun Mg, and is equal to 1.32712438 x 10%2° m? s~2; ¢ is the perihelion
distance, T}, is the perihelion time, and ¢ is the time at which we wish to compute
the position of the comet. Both 7}, and ¢ are expressed as Julian days. Barker’s
equation is a cubic equation that can be solved directly, using the method
described in Section 8.

Having found f, we now need to compute the radial distance r from the Sun
to the comet. This is found from the true anomaly f by writing the plane polar
form of the equation for a parabola,

2q
r= ,
14 cos f
and applying the trigonometric identity cos? @ = (1 + cos26)/2 to get [6]

r = gsec? (g) , (5)

where r will have the same units as the given perihelion distance q.

The quantities (r, f) are the polar coordinates of the comet, in the plane of
the orbit. But to be able to locate the comet in the sky, we’ll need to know the
position of the comet relative to the reference plane (the ecliptic). To that end,
we will perform a coordinate transformation to go from plane polar coordinates
in the plane of the orbit to spherical polar coordinates with the xy plane at the
ecliptic. We begin these coordinate transformations by defining the argument
of latitude u by [6]

u=w+ f, (6)

where w is the given argument of perigee and f is the true anomaly. Then the
cartesian coordinates of the comet in the ecliptic frame at time ¢ are given by

x = r(cosucosQ — sinusin ) cosi) (7)
= r(cosusin + sinu cos ) cos1) (8)
z = rsinusini (9)

2The term anomaly is used in celestial mechanics to refer to an angle. Its use goes back to
a time when any departure from uniform circular motion was considered to be “anomalous.”

3 Attributed to Thomas Barker (1722-1809), a meteorologist and astronomer who provided
tables of the motion of bodies in parabolic paths in his 1757 monograph An Account of
Discoveries Concerning Comets, with the Way to Find Their Orbits, and Some Improvements
in Constructing and Calculating Their Places. [7)

4The product GMg is known to better accuracy than either G or Mg individually, so for
best results, you should use this product in Barker’s equation, rather than using individual
values for the two constants and multiplying them together.



6 Position of the Sun

We’ve just found the comet’s position at time ¢ relative to the Sun, but we want
to know where it will be relative to the Farth. This requires a second calculation
to find the position of the Earth in its orbit around the Sun—or equivalently,
the position of the Sun as seen from the Earth. Luckily this can be done with
respectable accuracy (to about 1 minute of arc, or 61—00) using a set of empirical
formulae® [4]. We begin by finding the number of days n elapsed from noon on
January 1, 2000 (Julian day 2451545.0) until the time ¢ at which we wish to
calculate the comet’s position. This can be done by simply finding the difference
in Julian days:

n =t — 2451545.0 (10)

We now compute the mean longitude L and mean anomaly g of the Sun, using
empirical formulee available in the Astronomical Almanac [4]

L = 280.460°+ 0.9856474n (11)
g = 357.528°+0.9856003 n (12)

Here L and g will typically be very large angles—over 5000°. You will want
to reduce both angles by subtracting 360° repeatedly until they fall within the
range of 0° to 360°. (Or, even easier: divide the angle by 360°, and call the
result . The integer part of « tells how many complete revolutions there are,
so subtract 360° times the integer part of v from the original angle to reduce it
to the proper range.)

Now knowing L and g, we can use another empirical formula to find the
ecliptic longitude of the Sun, A\g [4]:

Ao = L+ 1.915°sin g + 0.020° sin 2g (13)
and the Earth-Sun distance Rq:
Ro =1.00014 — 0.01671 cosg — 0.00014 cos 2¢ (14)

where Rg will be in astronomical units (AU). One AU is roughly the average
distance between the Earth and the Sun, and is equal to 1.49597870 x 10!
meters. From Ag and Rq we can find the cartesian coordinates of the Sun in
the ecliptic frame:

To = R@ COS)\@ (15)
Yo = R@ sin)\@ (16)
2o = 0 (17)

5Small angles are often measured by dividing 1° into 60 minutes of arc or arcminutes,
indicated by the symbol /; each arcminute is divided into 60 seconds of arc or arcseconds,
indicated by the symbol /. Hence 1° = 60’ and 1’ = 60”". This system may also be used
to express the fractional part of larger angles: for example, 45.5° = 45°30/, and 65.375° =
65°22/30".



7 Position of ISON Relative to the Earth

Having found the position of Comet ISON relative to the Sun (z,y, z) and the
Sun relative to the Earth (zg, Yo, 2¢), we can now find the position of Comet
ISON relative to the Earth, (2, ye, z¢):

Te = THxg (18)
Ye = y+yo (19)
Ze = Z+2p (20)

Converting from cartesian to spherical polar coordinates gives an azimuthal
angle A called the ecliptic longitude, and a co-polar angle [ called the ecliptic
latitude of the comet: [3]

tan\ = 2L (21)

Te
Ze

Vaz+yZ + 22
Rotating this result from the plane of the ecliptic to the plane of the equator

gives an azimuthal angle « called the right ascension, and a co-polar angle §
called the declination (Figure 3): [3]

sinf = (22)

sin Acos e — tan G sin e
tana = b (23)
oS A

sind = sinfcose+ cosFsinesinA (24)

The right ascension « and declination ¢ are all that are necessary to locate the
comet on a star map, since star maps are laid out in these coordinates.

To find the azimuth and elevation of the comet, a few more steps are neces-
sary. We first need to find the local hour angle H, which is the angle from the
local meridian® to the comet, and is found from [3]

H=GST—A—a (25)

Here A is the observer’s longitude on the Earth (taking west longitude as pos-
itive), and GST is the Greenwich Sidereal Time. GST is the angle from the
vernal equinox to the prime meridian (measured in the plane of the equator) at
time ¢t. The GST (in degrees) may be found from an empirical formula [3]:

GST = 280.46061837 + 360.98564736629(¢ — 2451545.0)
+0.000387933 T2 — T /38710000, (26)
where t is a Julian day, and T is the time in Julian centuries (of 36525 days)
from noon, January 1, 2000 (which is Julian day 2451545.0):
t —2451545.0
T 36525

8The local meridian is the line in the sky running from north to south and passing directly
overhead.

(27)
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Figure 3: Right ascension and declination of an object, shown here as a star.
(After Bate, Mueller, and White, 1971 [8].)

Equation (26) may return very large angles; again you should add or subtract
multiples of 360° as needed to bring the GST into the range of 0° to 360°.
Finally, we can find the azimuth angle A and elevation angle h: [3]
sin H

tanA = 28
an cos H sin ¢ — tan d cos ¢ (28)

sinh = singsind + cos @ cosdcos H (29)

Here ¢ is the observer’s latitude (north positive), and the azimuth A is measured
along the horizon, starting from south and going clockwise (to the west). Hence
A = 0° is south, A = 90° is west, A = 180° is north, and A = 270° is east.
The elevation angle h is measured up from the horizon, so a positive value for
h means the comet is above the horizon and is visible.

Now you can predict the position (azimuth and elevation) of Comet ISON
at your location, and find the times when it will be visible from your location.
All you need are the Julian day for the time ¢ at which you wish to calculate
the comet’s position, and the comet’s orbital elements ¢, ¢, €, w, and T,,. To
estimate angles, hold your hand at arm’s length; your index finger is about 1°
wide, and your hand (fingers closed) is about 10° wide. The comet will probably
only be visible at night, so choose an observation time between your local sunset
and sunrise.

The methods described here can be applied to other comets in parabolic or
near-parabolic orbits (i.e. those whose eccentricity is near 1). Other methods
must be used for comets in elliptical or hyperbolic orbits, since Barker’s equation
is only valid for parabolic orbits.



POINTER. Inverse Trigonometric Functions.

Exercise care when computing inverse trigonometric functions, to ensure that
the resulting angle is in the correct quadrant. In general, there are two correct
angles, but the inverse trigonometric function of a calculator or computer will
return only one of them. The calculator-provided angle will be between —90° and
+90° for the sin™! and tan~! functions, and between 0° and 180° for the cos™!
function.

In cases like Egs. (21), (23), and (28), where we compute the inverse tangent
of the ratio y/x, determining the correct quadrant is simple: if the denominator
x is negative, then add 180° to the calculator’s or computer’s returned answer;
otherwise use the answer as returned. Many computer programming languages
provide a special function (typically called something like atan2(y,x)) just for
this type of problem, which will automatically return the angle in the correct
quadrant.

In cases like Egs. (22), (24), and (29) the returned angle is a “latitude an-
gle” .and will be between —90° and 4+90°; but since that’s where it should be, so
no adjustment of the angle is necessary.

Remember that you can always add or subtract as many multiples of 360° as
you like without changing the angle.

Also, be sure you're clear about whether the computational environment
you’re using assumes angles are in degrees or radians. Nearly all computer pro-
gramming languages assume angles are in radians. Scientific calculators have a
mode setting that allows them to work in either degrees or radians. Computing
trigonometric functions and their inverses in the wrong angle mode is one of the
most common mistakes people make in doing trigonometric calculations—be sure
you don’t make this mistake yourself.

8 Solving Barker’s Equation

Barker’s equation, which we saw earlier, gives the true anomaly f at time ¢ for
a parabolic orbit:

tan (g) + étan?’ (g) = \/GT;?@ —Tp) (4)

(Note that both side of the equation are dimensionless.) We are given time ¢,
the perihelion distance ¢, and perigee time 7),, and wish to solve for the true
anomaly f. In the past, astronomers solved this equation by referring to a set of
pre-computed tables called Barker’s tables. But today, computational resources
are plentiful, making it easy to solve Barker’s equation directly. The simplest
method of solution is a direct method, using the following steps [6] (where K is

10



the right-hand side of Eq. (4)):

3 3VGM
= —|K|= T
cot s 2| | 20)72 [t — T, (30)
S\ _ 2
cot(z) = 1+ cot” s+ cots (31)
s
— 3 _
cotw = cot (2) (32)
cot?w — 1
2 = — 33
cot 2w 2cotw (33)
tan (g) = (2cot2w) x sgn(t —Tp) (34)
Here sgn(x) is the signum function, and is defined as
-1 (x <0)
sgn(x) = 0 (x=0) (35)
+1 (x> 0)

Note that both ¢ and T}, will be in Julian days, so the difference ¢t — T}, will
be in days. You'll need to convert that to SI units (seconds) before you begin
calculating a solution to Barker’s equation.

Challenge. Now you can compute the position of the Comet ISON in the sky
(azimuth and elevation) at your latitude ¢ and longitude A, and a time of your
choosing. Find the azimuth A and elevation h of Comet ISON at that time, as
observed from your location, given the orbital elements of the comet in Table 1
below.

Table 1. Orbital elements of Comet ISON.

Orbital element Symbol Value
Perihelion distance q 0.0124431 AU
Eccentricity e 1.0000013
Inclination i 62.39824°
Longitude of ascending node Q 295.65272°
Argument of perihelion w 345.56521°
Time of perihelion passage T, 2456625.28555 JD

Hint 1. Look up the latitude ¢ and longitude A of your location. Count
north latitude and west longitude as positive; south latitude and east longitude
are negative.

11



Hint 2. For the time ¢, choose some time in early to mid-December 2013,
maybe about an hour or so before sunrise or after sunset. Convert this time
to Universal Time, and then to a Julian day, using the algorithm described in
Section 2. Be sure to include the fractional day as part of the calculation, as
was done in Example 1.

Hint 3. Begin your calculations by solving Barker’s equation (4) as de-
scribed in the previous section, then work through Equations (5) through (29)
to find the azimuth A and elevation h as your final results.

Hint 4. You might wish to write a computer program to carry out the
calculations described here. That will make it easy to change the calculation
time ¢ so you can locate the comet at different dates and times.
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