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Abstract

In this case study, we model a planet’s magnetic and gravitational fields using
spherical harmonic functions. As an exercise, we analyze data on the Earth’s
magnetic field collected by NASA’s MAGSAT spacecraft, and use it to derive a
simple magnetic field model based on these spherical harmonic functions.

1 Introduction

There are many times when it is useful to create a mathematical model of some
physical phenomenon: that is, a set of mathematical equations that summarizes
the results of many observations. For example, the Earth has a magnetic field
similar to the magnetic field of a bar magnet. Suppose we wish to estimate the
magnitude and direction of the Earth’s magnetic field at some specific location
on the Earth’s surface. How would we do that? We could search past records
for measurements made by various people, hoping to find some that are near the
point of interest, then try to interpolate between the observation points. This
method would be quite cumbersome, though—it would require sifting through
thousands of observations made by many different observers at many different
times, trying to find some appropriate observations from which to interpolate.

A simpler method is to create a mathematical model that summarizes all
the observations by fitting them to a set of mathematical equations. Once the
model has been created, computing an estimate of the Earth’s magnetic field at
a specific location is easy: just insert the latitude, longitude, and altitude of the
location of interest into the equations, and out comes the magnetic field vector.
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Such a mathematical model also makes it easy to look for trends in the data
with time (the drift of the magnetic poles, for example).

A similar method may be used for modeling the Earth’s gravitational field.
By fitting many observations of the magnitude and direction of the gravitational
acceleration to a set of mathematical functions, one may create a mathematical
model of the Earth’s gravitational field that can be useful for applications such
as high-precision orbit predictions.

2 Spherical Harmonics

For modeling the magnetic and gravitational fields of the Earth or other planets,
it is customary to use special functions called spherical harmonics. In a sense
these are two-dimensional counterparts of the sine and cosine functions used in
Fourier analysis. Given a set of data defined over the surface of a sphere (such
as the Earth), one can fit the data to a series of spherical harmonics in much
the same way as one can fit data defined on a circle (i.e. periodic data with a
period of 2π radians) to a Fourier series.

Spherical harmonic functions are actually complex-valued functions. Instead
of using those directly, we’ll create a series using, separately, the real and imagi-
nary components of the spherical harmonics, which are the two sets of functions:

cos(mφ)P m
l (cos θ)

sin(mφ)P m
l (cos θ)

where θ and φ are the usual polar and azimuthal angles (respectively) in spher-
ical polar coordinates, l and m are integer indices with m ≤ l, and P m

l (cos θ)
are special functions called associated Legendre functions of the first kind. The
first few such Legendre functions (through l = 3) are shown in Table 1.

Table 1. Associated Legendre functions, P m
l (cos θ).

P 0
0 (cos θ) = 1

P 0
1 (cos θ) = cos θ

P 1
1 (cos θ) = sin θ

P 0
2 (cos θ) = 1

2 (3 cos2 θ − 1)

P 1
2 (cos θ) =

√
3 sin θ cos θ

P 2
2 (cos θ) = 1

2

√
3 sin2 θ

P 0
3 (cos θ) = 1

2
(5 cos3 θ − 3 cos θ)

P 1
3 (cos θ) = 1

4

√
6 sin θ(5 cos2 θ − 1)

P 2
3 (cos θ) = 1

2

√
15 sin2 θ cos θ

P 3
3 (cos θ) = 1

4

√
10 sin3 θ
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POINTER. Associated Legendre Functions.
One of the tricky parts about working with spherical harmonic analysis is

that there are a number of different normalization conventions for the associated
Legendre functions in use, each of which gives rise to different leading coefficients
for P m

l (cos θ). The functions shown in Table 1 use the so-called Schmidt normal-
ization convention, which is the one most commonly used in geomagnetism. [5]
When working in other areas, you may encounter other conventions. The MAT-
LAB function legendre() calculates associated Legendre functions, and includes
an option that allows you to select among several different normalizations.

Note also that the notation P m
l indicates a function with two integer indices,

l and m; m is not an exponent.

3 Magnetic Field Models

Now suppose we wish to model the Earth’s magnetic field using spherical har-
monics. The Earth’s magnetic field is a vector field, meaning that there is a
magnetic field vector associated with each point in space. That complicates our
analysis a bit, since it would seem to mean that we have to fit separate series
to each of the three components of the magnetic field. But there’s a simpler
method: suppose we are only interested in modeling the magnetic field outside
the Earth, due to electric currents inside the Earth’s core. Then we can assume
there are no electric currents present in the region of space at which we are mod-
eling the magnetic field. With these assumptions, it turns out that Maxwell’s
equations of electromagnetism allow us to take the Earth’s magnetic field vector
B to be the gradient of a magnetic scalar potential V : [1–3]

B = −μ0∇V, (1)

where μ0 = 4π × 10−7 N A−2 is a constant called the permeability of free space,
the magnetic field B has units of teslas (T), and the magnetic scalar potential
V has units of amperes (A). The symbol ∇ is the gradient operator ; in spherical
polar coordinates, ∇V is

∇V (r, θ, φ) =
∂V

∂r
êr +

1
r

∂V

∂θ
êθ +

1
r sin θ

∂V

∂φ
êφ, (2)

and êr, êθ, and êφ are unit vectors in the r, θ, and φ directions, respectively.
Now all we need to do is fit the magnetic scalar potential V to a single spherical
harmonic series, which looks like this: [4, 5]

V (r, θ, φ) =
a

μ0

N∑
l=1

(a

r

)l+1 l∑
m=0

(gm
l cos mφ + hm

l sin mφ)P m
l (cos θ) (3)

where a = 6371.2 km is the mean radius of the Earth, r is the radial distance
from the center of the Earth (r > a since we’ve assumed we’re outside the Earth),
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and gm
l and hm

l are the expansion coefficients that we need to determine. The
l = 1 terms represent the dipole components of the magnetic field, l = 2 the
quadrupole moments, l = 3 the octupole moments, and so on.

Activity 1. (a) Why are there are no l = 0 terms included in the summations
in Eq. (3)? (b) Published tables of coefficients of gm

l and hm
l do not include any

h0
l coefficients. Why would that be?

In Eq. (3), the integer N is called the order of the spherical harmonic expan-
sion, and determines how many terms there will be in the series. In general, the
more terms, the more accurately the series will represent the data. However,
at some point the magnitude of the terms is about the same size as the mea-
surement errors in the data, so it makes little sense to carry the series beyond
that point. At the time of this writing, this series is typically carried out to
N = 13 for the full-scale geomagnetic field model. However, for the purposes of
this case study, we’ll carry out the series to just N = 3 to make things simpler.
This will still give a reasonably good model of the Earth’s magnetic field; it just
won’t be as accurate as the N = 13 model.

4 Determination of Coefficients

To determine the coefficients gm
l and hm

l , let’s apply the gradient operator
(Eq. (2)) to the spherical harmonic series for the magnetic scalar potential V
(Eq. (3)). Each of the components of the resulting vector will give one of
the components of the Earth’s magnetic field vector. In geomagnetism, we
customarily define the three components of the geomagnetic field as:

X = −Bθ = μ0(∇V )θ (northward component) (4)
Y = +Bφ = −μ0(∇V )φ (eastward component) (5)
Z = −Br = μ0(∇V )r (downward component) (6)

Let’s now calculate the partial derivatives of the potential V using Eqs. (2) and
(3) and Table 1, calculating the series out to N = 2; this will give eight series
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POINTER. Units.
When doing scientific calculations of this sort, it’s crucial that you pay proper

attention to units of measurement. An easy way to avoid problems with units is
to make it a rule that all variables in your computer program will always be stored
in base SI units (kilograms, meters, seconds, amperes), and derived units based
on them. For this project that means using these units for all calculations inside
the program:

• Magnetic field B in teslas (T).

• Magnetic scalar potential V in amperes (A).

• All lengths (r and a) in meters (m).

• Magnetic dipole moment m in A m2.

• All angles in radians (rad).

• Coefficients gm
l and hm

l in teslas.

If all inputs to your calculations are in base SI units, then the results of the calcu-
ations will automatically be in base SI units also. Note, however, that when you
look up coefficients gm

l and hm
l in the literature, they will be given in nanoteslas

(nT), so you may wish to multiply your calculated coefficients by 109 so that your
results are also in nanoteslas.

Remember to convert the MAGSAT magnetic field data to base SI units after
reading them from the data file.

terms for each component. The result is

X = μ0
1
r

∂V

∂θ

= −a3

r3
sin θg0

1 +
a3

r3
cos φ cos θg1

1 +
a3

r3
sin φ cos θh1

1

−3
a4

r4
cos θ sin θg0

2 +
a4

r4
cos φ

√
3(2 cos2 θ − 1)g1

2

+
a4

r4
sin φ

√
3(2 cos2 θ − 1)h1

2 +
a4

r4
cos(2φ)

√
3 sin θ cos θg2

2

+
a4

r4
sin(2φ)

√
3 sin θ cos θh2

2, (7)

Y = −μ0
1

r sin θ

∂V

∂φ

= 0g0
1 +

a3

r3
sin φg1

1 − a3

r3
cosφh1

1

+0g0
2 +

a4

r4
sin φ

√
3 cos θg1

2

−a4

r4
cosφ

√
3 cos θh1

2 +
a4

r4
sin(2φ)

√
3 sin θg2

2

−a4

r4
cos(2φ)

√
3 sin θh2

2, (8)
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POINTER. Spherical Polar Coordinates.
You will sometimes encounter different conventions for spherical polar coor-

dinates. As used here, θ is the polar angle (measured from the +z axis), and φ
is the azimuthal angle (measured in the x-y plane counterclockwise from the +x
axis). The (north) latitude is the complement of the polar angle, or 90◦−θ, while
the (east) longitude is the same angle as φ.

The coordinate r is the radial distance from the center of the Earth. It is
related to the altitude h above sea level by (approximately) r = a + h.

Z = μ0
∂V

∂r

= −2
a3

r3
cos θg0

1 − 2
a3

r3
cos φ sin θg1

1 − 2
a3

r3
sin φ sin θh1

1

−3
2

a4

r4
(3 cos2 θ − 1)g0

2 − 3
a4

r4
cos φ

√
3 sin θ cos θg1

2

−3
a4

r4
sin φ

√
3 sin θ cos θh1

2 −
3
√

3
2

a4

r4
cos(2φ) sin2 θg2

2

−3
√

3
2

a4

r4
sin(2φ) sin2 θh2

2. (9)

Activity 2. Continue calculating derivatives to expand each of these series to
order N = 3. This will mean seven additional terms (g0

3 , g1
3 , h1

3, g2
3 , h2

3, g3
3 ,

and h3
3) for a total of 15 terms for each of the X, Y , and Z components. (You

may wish to check your results using a symbolic mathematics program such as
Mathematica.)

As you can see, the number of terms increases rapidly as the order N is
increased. For a spherical harmonic expansion of order N , each of the X, Y ,
and Z series will have (N + 1)2 − 1 terms. For the full N = 13 model, that’s
195 terms in each series. That’s why were limiting the expansion to N = 3, for
which there are just 15 terms in each series.

Observations of the Earth’s magnetic field will take the form of a set of com-
ponents (X, Y , and Z), measured at a specific polar angle θ (the complement of
the latitude), longitude φ, and distance from the center of the Earth r. Our data
set will then be a set of these variables, and we wish to solve for the unknown
gm

l and hm
l coefficients.

One fairly straightforward way to do this is to write Eqs. (7) – (9) in matrix
form. Doing this to order N = 2, we have Eq. (10):
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⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝

X
1

Y
1

Z
1

X
2

Y
2

Z
2

X
3

Y
3

Z
3 . . .

X
M

Y
M

Z
M

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠

=

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝

−
a
3

r3 1

si
n

θ 1
a
3

r3 1

co
sφ

1
co

sθ
1

··
·

a
4

r4 1

si
n(

2φ
1
)√ 3

si
n

θ 1
co

sθ
1

0
a
3

r3 1

si
n

φ
1

··
·

−
a
4

r4 1

co
s(

2φ
1
)√ 3

si
n

θ 1

−2
a
3

r3 1

co
sθ

1
−2

a
3

r3 1

co
sφ

1
si

n
θ 1

··
·

−
3√ 3

2
a
4

r4 1

si
n(

2φ
1
)s

in
2
θ 1

. . .
. . .

. .
.

. . .

−
a
3

r3 M

si
n

θ M
a
3

r3 M

co
sφ

M
co

sθ
M

··
·

a
4

r4 M

si
n(

2φ
M

)√ 3
si

n
θ M

co
sθ

M

0
a
3

r3 M

si
n

φ
M

··
·

−
a
4

r4 M

co
s(

2φ
M

)√ 3
si

n
θ M

−2
a
3

r3 M

co
sθ

M
−2

a
3

r3 M

co
sφ

M
si

n
θ M

··
·

−
3√ 3

2
a
4

r4 M

si
n(

2φ
M

)s
in

2
θ M

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝

g
0 1 g
1 1

h
1 1

g
0 2 g
1 2

h
1 2

g
2 2

h
2 2

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠

(1
0)
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Here there are M different data points, each of which consists of an observed
magnetic field vector (Xi, Yi, and Zi), and the location ri, θi, and φi at which
that observation was made. The left-hand side is a 3M × 1 column vector,
and contains the observed magnetic field components; let’s call this vector b.
The matrix on the right of the right-hand side is an 8 × 1 column vector that
contains the coefficients we want to solve for; let’s call that vector g. The large
matrix on the left of the right-hand side is a 3M × 8 matrix that contains each
of the terms of the spherical harmonic expansions of X, Y , and Z, evaluated
at each location; we’ll call this matrix A. The first row of A times vector g
gives the terms of the spherical harmonic expansion for X, evaluated at the
location of data point 1; the second row times g gives the terms for Y evaluated
at the location of data point 1; and the third row times g gives the terms for Z
evaluated at data point 1. Rows 4–6 repeat the pattern: they’re the terms in
the expansion for X, Y , and Z, but evaluated at the location of data point 2;
rows 7–9 are evaluated at the location of data point 3, etc. Then we can write
Eq. (10) concisely as

b = Ag. (11)

We know all the magnetic field observations (vector b), and all the spherical
harmonic terms evaluated at the data locations (matrix A); we just need to
solve for the coefficient vector g. Formally, we could do this with a matrix
inverse, just by multiplying each side on the left by A−1:

g = A−1b.

But there’s a problem here: matrix A isn’t necessarily square. In fact, it will typ-
ically have far more rows than columns, and thus constitute an overdetermined
system. How can we compute the inverse of a non-square matrix? Technically
we can’t, but there is a technique available that allows us to solve Eq. (11) for
vector g in a least-squares sense: it returns the g that best fits the data in
matrix A. This technique is called singular value decomposition.

5 Singular Value Decomposition

The singular value decomposition (SVD) of a matrix A expresses A as a product
of three matrices:

A = UΣVT , (12)

where in our case A is the matrix of spherical harmonic expansion terms (which
is known), and all the matrices on the right-hand side are determined by the
SVD method. Singular value decomposition exposes the geometric structure of
a matrix, which is an important aspect of many matrix calculations. A matrix
can be described as a transformation from one vector space (e.g. vector Ag)
to another (e.g. vector b); the components of the SVD quantify the resulting
change between the underlying geometry of those vector spaces.

Substituting Eq. (12) into Eq. (11), we have

b = (UΣVT )g. (13)
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In Eqs. (12) and (13), matrices U and V are square and orthogonal, in the
sense that their column vectors are orthonormal (i.e. UTU = I and VTV = I,
and therefore U−1 = UT and V−1 = VT ). The matrix Σ is a generally non-
square matrix containing the singular values of matrix A (denoted σi) along its
main diagonal and zeroes elsewhere. Once the singular value decomposition is
performed (i.e. matrices U, Σ, and V have been found), then we can solve Eq.
(13) for g:

g = VΣ+UTb. (14)

Here Σ+ ≡ (ΣT Σ)−1ΣT is called the pseudo-inverse of matrix Σ [6,7]. Because
of the structure of Σ (a non-square diagonal matrix), Σ+ can be found by
simply transposing Σ and taking the reciprocals of the elements along its main
diagonal, so Σ+

ii = 1/σi, Σ+
ij = 0 for i �= j, and Σ+Σ = I. If Σ is non-singular

(i.e. none of the σi are near zero), you don’t need to do any more. However, if
Σ is singular or nearly so (i.e. if any of the σi are near zero) you will want to
replace the small values of σi (those below a specified tolerance) along the main
diagonal of Σ by setting the corresponding diagonal elements of Σ+ to zero; this
prevents small measurement errors in b from producing large changes in g. The
replacement of the small values in Σ by zeros in Σ+ is equivalent to introducing
a smallest cutoff eigenvalue σi along the main diagonal of Σ in order for the
matrix to be invertible. However, the choice of such cutoff eigenvalues is not
unique. As a working solution, the optimal choice of such small eigenvalues can
be easily implemented by allowing a threshold ratio between the smallest and
the largest eigenvalues which is not smaller than 10 times the machine precision.
If this threshold is not met, you increase the cutoff eigenvalues by 10 until it
meets the criterion. In all cases you should be able to test the stability of the
pseudo-inverse by changing this cutoff eigenvalue.

Eq. (14) is then the solution to our problem. Given the magnetic field
observations in vector b and the singular value decomposition of matrix A
(which gives U, V, and Σ), we have the desired coefficients g. But how do we
perform the singular value decomposition of A? The simplest method is to use
published algorithms [10, 11] or the function svd() in MATLAB; the details of
the internal workings of these implementations are a bit too complex to go into
here.

Activity 3. Derive Eq. (14) from Eq. (13).

Activity 4. Equation (14) is most efficiently calculated by doing the multiplica-
tions from right to left. Verify this for yourself by calculating the total number
of floating-point multiplications required to compute this equation when the
right-hand side is evaluated from right to left, and when it is evaluated from
left to right. In Equation (14), if M is the total number of data points, and
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the model is of order N = 3, then matrix V is of size 15 × 15, matrix Σ+ is
15 × 3M , matrix UT is 3M × 3M , and vector b is 3M × 1.

Hint: When multiplying an m × n matrix by an n × p matrix, the total
number of floating-point multiplications required is m × n × p.

Challenge. Implement Eq. (14) to order N = 3 using MATLAB or some other
programming language to find the coefficients gm

l and hm
l of the Earth’s mag-

netic field. For data, you can use a set of observations made by the MAGSAT
spacecraft during the years 1979–80. MAGSAT collected a magnetic field data
point every 0.5 second for 6 months, for a total of about 30 million data points.
To make the data a bit more manageable, we’ve selected roughly 1 point out
of every 300,000 (about 1 point every 40 hours) for a total of 100 data points,
and made this available as file magsat-data.dat. The MAGSAT data is in the
form of a plain ASCII text file, in the following format:

Column Description
1 Time of observation (milliseconds of day; ignore)
2 Latitude 90◦ − θ (north positive; deg)
3 Longitude φ (east positive; deg)
4 Radial distance from center of Earth r (km)
5 Magnetic field component X (nT)
6 Magnetic field component Y (nT)
7 Magnetic field component Z (nT)
8 Attitude processing flag (ignore)

Your program will need to read this data, do any needed unit conversions,
compute and store the matrix elements, and then solve the least-squares problem
to find the coefficients gm

l and hm
l .

If you are using MATLAB, you may wish to investigate MATLAB’s built-
in pseudo-inverse function pinv(), which is more efficient than calculating Σ+

yourself. MATLAB also includes a built-in function svd() to perform a singular
value decomposition.

Once you have your program working, you may compare your results with
the first 15 coefficients of the DGRF 1980 magnetic field model, available from
NOAA at http://www.ngdc.noaa.gov/IAGA/vmod/igrf.html. Your results
will not match DGRF 1980 exactly, because you’re not using the same set of
observations as input—you’re only using 100 points of MAGSAT data. Never-
theless, the comparison will be close enough for you to tell whether you’ve done
the calculation correctly.
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Figure 1: Map of the magnitude of the geomagnetic field at the surface of
the Earth at 1980.0, produced from a spherical harmonic model. Contours are
labeled in units of nanoteslas (nT). Note that the field is generally strongest
(red) at the magnetic poles and weakest (blue) near the equator. Note also
the large dip in magnitude around central South America; this is known as the
South Atlantic Anomaly.

Challenge. As an additional project, you may wish to try implementing a
geomagnetic field model. This would mean writing a computer program to
calculate the X, Y , and Z components of the Earth’s magnetic field vector at
any given latitude, longitude, and radial distance from the center of the Earth,
using Eqs. (1) through (3), along with the gm

l and hm
l coefficients you just

calculated in the previous Challenge. If you have the program calculate the
magnetic field vector at many points along a grid over the surface of the Earth,
you can produce contour plots of each component. Figure 1 shows something
similar: a contour plot of the magnitude of the magnetic field vector (i.e. the
square root of the sum of the squares of the X, Y , and Z components).

6 Analysis

Besides using them in the magnetic field model, the coefficients gm
l and hm

l may
also be used to directly calculate a few quantities of interest. For example, the
magnetic dipole moment of the Earth’s magnetic field can be shown to be given
by [12]

m =
4πa3

μ0

√
(g0

1)2 + (g1
1)2 + (h1

1)2. (15)
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POINTER. The Inverse Tangent Function.
The inverse tangent function in Eq. (18) may look a bit odd. Why not just

cancel the two minus signs? The reason is that the signs of both the numerator
and the denominator must be used to ensure that the longitude will be in the
correct quadrant.

When computing the inverse tangent of a ratio like this, the rule is: do the
division, then compute the arctangent of the quotient. The result, as computed by
a calculator or computer, will be between −90◦ and +90◦. If the denominator of
the original ratio was positive, then use this returned answer; if the denominator
was negative, then add 180◦ (π radians) to the returned answer. In Eq. (18) we
have to keep the minus signs as they are to ensure that this extra 180◦ is added
when the denominator (including the minus sign) is negative.

Most computer programming languages include a special built-in function to
handle this case, usually called something like atan2(y,x). This will compute
the arctangent of y/x, then check the sign of x to place the result in the correct
quadrant. Be sure you remember this when computing the arctangent in Eq. (18).

It turns out that the magnetic poles of the Earth are not located at the
rotation poles; they are rather located some distance away, and move from one
year to the next. We can compute some quantities related to the location of
the magnetic poles directly from the coefficients gm

l and hm
l . For example, the

tilt angle α of the magnetic axis relative to the rotation axis can be shown to
be [13]

cos α =
−g0

1√
(g0

1)2 + (g1
1)2 + (h1

1)2
(16)

The geographic latitude ϕN and longitude λN of the magnetic north pole are
found from [14]

sinϕN =
−g0

1√
(g0

1)2 + (g1
1)2 + (h1

1)2
(17)

tan λN =
−h1

1

−g1
1

(18)

Activity 5. Based on your earlier results where you found the magnetic field
coefficients gm

l and hm
l , determine (a) the magnetic dipole moment of the Earth;

(b) the tilt of the magnetic axis; and (c) the latitude and longitude of the
magnetic north pole. (All values you calculate will be valid as of 1980, when
the MAGSAT observations were made.)
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7 Other Applications

Using the techniques described here, you may also model a planet’s gravitational
field. [15,16] In that case, the measurements are of the acceleration due to gravity
g, which can be written as the gradient of a gravitational potential G:

g = −∇G (19)

The gravitational potential G is expanded in a spherical harmonic series, just
as as done with the magnetic scalar potential V .

Spherical harmonic expansions have also found applications in plasma physics.
It has recently been shown [17] that if you fit a plasma’s distribution function
to a spherical harmonic series, then the moments of the plasma (i.e. the plasma
density, bulk velocity, temperature, and pressure) can be quickly computed as
functions of the expansion coefficients. This technique is similar to formulas
for calculating the Earth’s magnetic dipole moment and magnetic pole location
described earlier.
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[17] A.F. Viñas and C. Gurgiolo. Spherical harmonic analysis of particle veloc-
ity distribution function: Comparison of moments and anisotropies using
Cluster data. J. Geophys. Res., 114, A01105, doi:10.1029/2008JA013633
(2009).

14


